
www.manaraa.com

Semantic Web Reasoning with Conceptual Logic
Programs

Stijn Heymans, Davy Van Nieuwenborgh?, and Dirk Vermeir??

Dept. of Computer Science
Vrije Universiteit Brussel, VUB

Pleinlaan 2, B1050 Brussels, Belgium
{sheymans,dvnieuwe,dvermeir}@vub.ac.be

Abstract. We extend Answer Set Programming with, possibly infinite, open do-
mains. Since this leads, in general, to undecidable reasoning, we restrict the syn-
tax of programs, while carefully guarding useful knowledge representation mech-
anisms such as negation as failure and inequalities. Reasoning with the resulting
Conceptual Logic Programs can be reduced to finite, normal Answer Set Pro-
gramming, for which reasoners are available.
We argue that Conceptual Logic Programming is a useful tool for uniformly rep-
resenting and reasoning with both ontologies and rules on the Semantic Web,
as they can capture a large fragment of the OWL DL ontology language, while
extending it in various aspects.

1 Introduction

Ontology languages such as OWL and OWL DL[5] are set to play a vital role on the
future Semantic Web, as they are designed to represent a wide range of knowledge on
the Web and to ensure decidable reasoning with it. Decidability of such languages often
results from the decidability of the underlying Description Logic (DL)[4] that defines
its formal semantics, e.g., the DL SHOIQ(D) is the DL corresponding to OWL DL.

Another well-established knowledge representation formalism is Answer Set Pro-
gramming (ASP)[11], a Logic Programming (LP) paradigm that captures knowledge
by programs whose answer sets express the intended meaning of this knowledge. The
answer set semantics presumes that all relevant domain elements are present in the
program. Such a closed domain assumption is, however, problematic if one wishes to
use ASP for ontological reasoning since ontologies describe knowledge in terms of
concepts and interrelationships between them, and are thus mostly independent of con-
stants.

E.g., consider the knowledge that managers drive big cars, that one is either a man-
ager or not, and that Felix is definitely not a manager. This is represented by the program

? Supported by the FWO.
?? This work was partially funded by the Information Society Technologies programme of the

European Commission, Future and Emerging Technologies under the IST-2001-37004 WASP
project.

G. Antoniou and H. Boley (Eds.): RuleML 2004, LNCS 3323, pp. 113-127, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

www.manaraa.com

114 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

P1:
bigCar(X) ← Manager(X)

Manager(X) ∨ not Manager(X) ←
¬Manager(felix) ←

Using traditional ASP, grounding would yield the program

bigCar(felix) ← Manager(felix)
Manager(felix) ∨ not Manager(felix) ←

¬Manager(felix) ←

which has a single answer set {¬Manager(felix)} such that one would wrongfully
conclude that there are never managers or persons that drive big cars.

We resolve this by introducing, possibly infinite, open domains. Under the open
answer set semantics the example has an answer set (H = {felix , heather},M =
{¬Manager(felix),Manager(heather), bigCar(heather)}) whereH is a universe for
P1 that extends the constants present in P1 andM is an answer set of P1 grounded with
H. One would rightfully conclude that it is possible that there are persons that are
managers and thus drive big cars. Note the use of disjunction and negation as failure in
the head of Manager(X) ∨ not Manager(X) ← . Such rules will be referred to as free
rules since they allow for the free introduction of literals; answer sets are, consequently,
not subset minimal.

The catch is that reasoning, i.e. satisfiability checking of a predicate, with open
domains is, in general, undecidable. In order to regain decidability, we restrict the syntax
of programs while retaining useful knowledge representation tools such as negation as
failure and inequality. Moreover, the result, (local) Conceptual Logic Programs (CLPs),
ensures a reduction of reasoning to finite, closed, ASP, making CLPs amenable for
reasoning with existing answer set solvers.

As opposed to the CLPs in [16, 15], we support constants in this paper. Constants in
a CLP have the effect that the tree-model property, a decidability indicator, is replaced
by the more general forest-model property. Furthermore, [16, 15] characterized reason-
ing with CLPs by checking non-emptiness of two-way alternating tree-automata[31].
Although such automata are elegant theoretical tools, they are of little practical use,
hence the importance of an identification of CLPs that can be reduced to traditional
ASP.

Conceptual logic programs prove to be suitable for Semantic Web reasoning, for
we can simulate an expressive DL closely related to the ontology language OWL DL.
Since CLPs, as a LP paradigm, are also a natural framework for representing rule-based
knowledge, they present a unifying framework for reasoning with ontologies and rules.
Some additional benefits of CLPs, compared with OWL DL, are their ability to close
the domain at will and to succinctly represent knowledge that is not trivially expressible
using OWL DL. Finally, several query problems, in the context of databases satisfying
ontologies, can be stated as satisfiability problems w.r.t. CLPs and are consequently
decidable.

The remainder of the paper is organized as follows. In Section 2, we extend ASP
with open domains, and in Section 3, we define (local) CLPs and reduce reasoning to
normal ASP. In Section 4, we show the simulation of an expressive class of DLs and

www.manaraa.com

Semantic Web Reasoning with Conceptual Logic Programs 115

discuss benefits of using CLPs for Semantic Web reasoning. Section 5 relates other
work to our approach. Finally, Section 6 contains conclusions and directions for further
research. Due to space restrictions, proofs have been omitted; they can be found in [14].

2 Answer Set Programming with Open Domains

Terms are constants or variables, denoted as lowercase or uppercase characters respec-
tively. An atom is either a unary q(s) or a binary f(s, t) for predicates q and f , and
terms s and t. A literal is an atom or an atom preceded by the classical negation sym-
bol ¬. We assume ¬¬a = a for an atom a; for a set of literals α, ¬α = {¬l|l ∈ α},
and α is consistent if α ∩ ¬α = ∅. An extended literal is a literal l or a literal pre-
ceded by the negation as failure (naf) symbol not. A set of unary literals ranging over a
common term s may be denoted as α(s), e.g., {a(s), not b(s)} = {a, not b}(s). Sim-
ilarly, a set of binary literals over (s, t) can be denoted as α(s, t). The positive part of
a set of extended literals α is α+ = {l|l ∈ α, l literal}, while the negative part of α is
α− = {l|not l ∈ α}, e.g., {a, not b}+ = {a} and {a, not b}− = {b}.

A disjunctive logic program (DLP) is a set of rules α ← β where α, the head, and
β, the body, are sets of extended literals and |α+| ≤ 1, i.e. the head contains at most
one ordinary literal1. Atoms, (extended) literals, rules, and programs are ground if they
do not contain variables. The constants appearing in a DLP P are denoted by HP , the
unary predicates (possibly negated)2 in P are upreds(P) = {l|l(x) in P}, bpreds(P)
are the binary predicates, and preds(P) = upreds(P) ∪ bpreds(P). A universe H for
a DLP P is any non-empty extension of HP , i.e. HP ⊆ H. The grounded version PH
of a DLP P w.r.t. a universe H for P is the program P with all variables replaced by
all possible elements from H. PH may be infinite if H is; we assume, however, that a
grounded version PH originates from a finite P .

E.g., the program P2: sel(I ,S) ∨ not sel(I ,S)← ; av(i) ← ; av(I) ← sel(I ,S);
expresses that an item is sold by a seller or not, an item is available if it has a seller, and
we have a particular available item i. The constants in P2 are HP = {i}; some of the
universes for P2 areH1 = {i, s} or an infiniteH2 = {i, x1, x2, . . .}.

For a grounded P , let LP be the set of literals that can be formed from P . A con-
sistent subset of LP is an interpretation of P . An interpretation I satisfies a literal l,
denoted I |= l, if l ∈ I ; an extended literal not l is satisfied by I if l 6∈ I , and I
satisfies a set α of extended literals, denoted I |= α iff I satisfies every element of α.
A rule r : α ← β, α 6= ∅, in a grounded P is satisfied by I , denoted I |= r, if I |= l
for some l ∈ α whenever I |= β. If α = ∅, i.e. the rule is a constraint, I |= r iff
I 6|= β. An interpretation I is a model of a groundedP if I satisfies every rule in P . For
a simple grounded program P , i.e. not containing naf, an answer set of P is a subset
minimal model of P . If P is not simple, we first reduce it for a particular interpre-
tation I of P , with the Gelfond-Lifschitz transformation[22], to the simple GL-reduct
P I = {α+ ← β+ | α ← β ∈ P, β− ∩ I = ∅, α− ⊆ I}. An interpretation M of a
grounded P is an answer set of P if M is an answer set of PM .

1 This restriction, which makes the GL-reduct disjunction-free, is not imposed by classical
DLPs.

2 In the future, we silently assume the “(possibly negated)” phrase.

www.manaraa.com

116 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

For a DLP P , not grounded, an open interpretation is a pair (H, I) where H is a
universe for P and I is an interpretation of PH . An open answer set of P is an open
interpretation (H,M) such thatM is an answer set of PH . In the following, we usually
omit the “open” qualifier. A p ∈ upreds(P) is satisfiable w.r.t. P iff there exists an
answer set (H,M) of P and some x ∈ H such that p(x) ∈ M , in which case we
also say that (H,M) satisfies p. A program P is consistent if it has an answer set. The
associated reasoning tasks are satisfiability checking and consistency checking, where
the latter can be reduced to the former by introducing a new predicate p, e.g., with a
rule p(X) ∨ not p(X)←.

With a universe H = {i, s, x} for P2 both (H,M1 = {av(i), sel(x , s), av(x)})
and (H,M2 = {av(i)}) are answer sets of P2. Since M1 contains sel(x , s), the GL-
reductP2

M1

H will contain sel(x , s)← , which in turn motivates the presence of sel(x , s)
in M1. On the other hand, since sel(x , s) 6∈M2, the rule sel(x , s) ∨ not sell(x , s)←
is automatically satisfied and will not be considered for inclusion in the GL-reduct. In-
tuitively, sel(I ,S) ∨ not sel(I ,S)← can be used to freely introduce sel -literals, pro-
vided no other rules prohibit this, e.g., a constraint ← sel(x , s) makes sure no answer
set contains sel(x , s). We will call a predicate f free if f (X ,Y) ∨ not f (X ,Y)← or
f (X) ∨ not f (X) ← is in the program, or is silently assumed to be in it, for a binary
or unary f respectively. Similarly, a ground literal l is free if we have l ∨ not l ← .

Open answer sets are a generalization of the k-belief sets in [12]. A k-belief set
of a program P is a pair 〈k,B〉 where k is a nonnegative integer and B is an answer
set of Pk, which is the grounding of P with its own constants and k new ones. Obvi-
ously, every k-belief set is an open answer set; the opposite is false as we may have
infinite universes and, consequently, infinite open answer sets while k-belief sets are
finite. Since reasoning, e.g., satisfiability checking, is undecidable under the k-belief
semantics[25], reasoning under the open answer set semantics is too.

3 Conceptual Logic Programs

Since Open Answer Set Programming is, in general, undecidable, we seek to restrict
the structure of DLPs to regain decidability while retaining enough expressiveness for
solving practical problems. An important indication of decidability is the tree-model
property, e.g., in modal logics[30], or its generalization, the forest-model property, as
in DLs with individuals[18].

A program P has the forest-model property if the following holds: if P has an
answer set that satisfies a unary predicate p, then P has an answer set with a forest
shape that satisfies p in a root of a tree in this forest. E.g., consider the program P3

representing the knowledge that a company can be trusted for doing business with if it
has the ISO 9000 quality certificate and at least two different trustworthy companies are
doing business with it:

trust(C)← t bus(C ,C1), t bus(C ,C2),C1 6= C2 , qual(C , iso9000)
← t bus(C ,D),not trust(D)

www.manaraa.com

Semantic Web Reasoning with Conceptual Logic Programs 117

with t bus and qual free predicates, and iso9000 a constant. An answer set3 ofP3, e.g.,
M = {trust(x1), t bus(x1 , x2), t bus(x1 , x3), qual(x1 , iso9000), trust(x2), . . .}, is
such that for every trusted company xi in M , i.e. trust(xi) ∈ M , there must be
t bus(xi , xj), t bus(xi , xk) and trust(xj), trust(xk) with xj 6= xk; additionally, ev-
ery trusted company has the iso9000 quality label. This particular answer set has a
forest shape, as can be seen from Figure 1: we call it a forest-model. The forest in

x1

iso9000x3x2

x4 x5 x7x6

{trust}{trust}

{trust}

{trust} {trust} {trust} {trust}

t bus
qual

Fig. 1. Forest-Model

Figure 1 consists of two trees, one with root x1 and one, a single node tree, with root
iso9000 . The labels of a node x in a tree, e.g., {trust} for x2, encode which literals are
in the corresponding answer set, e.g. trust(x2) ∈ M , while the labeled edges indicate
relations between domain elements. The dashed arrows, describing relations between
anonymous domain elements x ∈ H\HP , and constants, appear to be violating the
forest structure; their labels can, however, be stored in the label of the starting node,
e.g., qual(x2 , iso9000) can be kept in the label of x2 as qual iso9000 . Since there are
only a finite number of constants, the number of different labels in a forest would still
be finite. It is clear that M satisfies the predicate trust in the root of a tree.

A particular class of programs with this forest-model property are Conceptual Logic
Programs (CLPs).

Definition 1. A CLP is a DLP such that a rule is of one of the following types:

– free rules l ∨ not l ← for a literal l, which allow for the free addition of the literal
l, if not prohibited by other rules,

– unary rules4 a(s) ← β(s),∪mγm(s , tm),∪mδm(tm),∪i 6=j ti 6= tj , such that, if
γm 6= ∅ then γ+

m 6= ∅, and, in case tm is a variable: if δm 6= ∅ then γm 6= ∅,
– binary rules f (s , t)← β(s), γ(s , t), δ(t) with γ+ 6= ∅ if t is a variable,
– constraints ← a(s).

3 The universe H can be deduced from this answer set.
4 We will write unary rules, for compactness, as a(s)← β(s), γm(s, tm), δm(tm), ti 6= tj , with

variables assumed to be pairwise different.

www.manaraa.com

118 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

where i and j are within the range of m.

P1, P2, and P3 are examples of CLPs. CLPs are designed to ensure the forest-model
property. E.g., a rule q(X) ← not f (X ,Y),¬q(Y) is not a CLP rule since, if ¬q is
free, {q(x),¬q(y)} is an answer set that cannot be transformed into a tree due to the
lack of a connection between nodes x and y. The same argument applies to rules of the
form q(X)← ¬q(Y). One may have, however, a rule q(X)← ¬q(a) for a constant a,
since an answer set {q(x),¬q(a)} consists of two trees, with roots x and a respectively.

A rule f (X ,Y) ← v(X) is not allowed since it may enforce f -connections that
break the tree-structure. On the other hand, f (X , a) ← v(X) is allowed, as it only
connects nodes x and the constant a. Note that more general rules than the ones in
Definition 1 can be easily obtained by unfolding atoms in the bodies, resulting in rules
with a tree structure. A complicated constraint ← β is equivalent to the unary rule
a(s) ← β and the simple constraint ← a(s). The idea of ensuring such connected-
ness of models in order to have desirable properties, like decidability, is similar to the
motivation behind the guarded fragment of predicate logic[3].

Theorem 1. Conceptual logic programs have the forest-model property.

Forest-models of a CLP consist of at most c + 1 trees, with c the number of constants
in the program. Each constant is the root of a tree, and an extra tree may be needed if a
predicate can only be satisfied by an anonymous element, which will be the root of this
tree.

Those trees may be infinite, but have bounded branching. For every label of a node
x containing a predicate p, we have that p(x) is in the forest-model, such that there
must be some rule p(x) ← β+(x), γ+

m(x , ym), δ+
m(ym) with a true body (if there were

no such rule there would be no reason to include p(x) in the forest-model, violating
the minimality of answer sets). Thus, intuitively, in order to make p true in x, one
needs to introduce at most |{ym}| successor nodes5. Since the size of the label at x
is, roughly, bounded by the number of predicates in the program, this introduction of
new successors of x only needs to occur a bounded number of times, resulting in the
bounded branching.

In [15], decidability of satisfiability checking was shown by a reduction to two-
way alternating tree-automata[31]. Since the CLPs in this paper also contain constants
the automata reduction is not directly applicable. Moreover, while automata provide an
elegant characterization, few implementations are available.

We slightly restrict CLPs, resulting in local CLPs, such that satisfiability checking
can be reduced to normal, finite ASP, and, consequently, performed by existing answer
set solvers such as DLV[21] and Smodels[27].

We first indicate how infinite forest-models can be turned into finite answer sets:
cut every path in the forest from the moment there are duplicate labels and copy the
connections of the first node in such a duplicate pair to the second node of the pair.
Intuitively, when we reach a node that is in a state we already encountered, we proceed
as that previous state, instead of going further down the tree. This cutting is similar to

5 This bound can be easily tightened, e.g., if ym is a constant there is no need for a successor
ym, since constants are treated as roots of their own tree.

www.manaraa.com

Semantic Web Reasoning with Conceptual Logic Programs 119

the blocking technique for DL tableaux[4], but the minimality of answer sets makes it
non-trivial and only valid for local CLPs, as we indicate below. Considering the forest-
model in Figure 1, we can cut everything below x2 and x3 since they have the same
label as x1. Furthermore, since t bus(x1 , x2), t bus(x1 , x3), and qual(x1 , iso9000),
we have t bus(xi , x2), t bus(xi , x3), and qual(xi , iso9000) for i = 2 and i = 3,
resulting in the answer set depicted in Figure 2.

x1

iso9000x3x2

Fig. 2. Bounded Finite Model

This cutting is not possible for arbitrary CLPs. E.g., a(X) ← f (X ,Y), a(Y) and
a(X) ← b(X) with b and f free predicates. A possible forest-model of this small
program is {a(x), f(x, y), a(y), f(y, z), b(z), a(z)} with a tree {x → y → z}. Since
x and y have the same label we cut at y, however, in the resulting answer set a(x) is
not motivated, as b(z) is no longer present. The result of cutting is thus not minimal.
Local CLPs solve this by making sure that a literal a(x) is always motivated by x
itself, successors y of x, or constants, such that, upon cutting, no motivating literals
for literals higher up in the tree are cut away. Formally, local6 CLPs are CLPs where
rules a(s) ← α(s), γm(s , tm), βm(tm), ti 6= tj and f (s , t) ← α(s), γ(s , t), β(t) are
such that for every b ∈ β+

(m), either b(t(m)) ∨ not b(t(m)) ←∈ P or for all rules

r : b(s)← body(r), body(r)
+

= ∅. The programs P1, P2, and P3 are local CLPs.
Every infinite forest-model of a local CLP can thus be made into a finite answer

set, and moreover, we can put a bound, depending only on the program, on the number
of domain elements that are needed for the finite version. Since there are only a finite
number of labels m, every path of length longer than m will contain a duplicate label.
The branching of every tree in a forest-model is also bounded, say by n, and there is
a bounded number of trees in the forest-model (c+ 1 for c the number of constants in
the program), such that the number of nodes in an answer set that resulted from cutting
is bounded by some kP for a local CLP P . We can then reduce satisfiability checking
w.r.t. a local CLP P to normal ASP by introducing at least kP constants.

6 The conditions for local are too strict, as is shown in [14], in the sense that there are CLPs
that are not local but for which the infinite answer sets can still be made finite. However, since
local CLPs are a syntactical restriction of CLPs, locality is a sufficient condition that is easy
to check.

www.manaraa.com

120 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

Theorem 2. Let P be a local CLP. p ∈ upreds(P) is satisfiable w.r.t. P iff there is an
answer setM of ψ(P) containing a p(xi), 1 ≤ i ≤ kP , where ψ(P) = P ∪{cte(xi)←
| 1 ≤ i ≤ kP }.

In the non-trivial “only if” direction, a forest-model will be transformed into an answer
set containing less than kP domain elements by the cutting technique described above,
which in turn will be mapped to the constants of ψ(P).

4 Semantic Web Reasoning with Conceptual Logic Programs

Description Logics[4] play an important role in the deployment of the Semantic Web,
as they provide the formal semantics of (part of) ontology languages such as OWL[5].
Using concept and role names as basic building blocks, terminological and role axioms
in such DLs define subset relations between complex concept and role expressions re-
spectively.

The semantics of DLs is given by interpretations I = (∆I , ·I) where ∆I is a non-
empty domain and ·I is an interpretation function.ALCHOQ(t,u)7 is a particular DL
with syntax and semantics as in Table 1; concept names A and individuals {o} are the
base concept expressions, P is a role name, establishing the base role expression, D
and E are arbitrary concept expressions, and R and S are arbitrary role expressions.

Table 1. Syntax and Semantics ALCHOQ(t,u)

concept names AI ⊆ ∆I

role names P I ⊆ ∆I ×∆I
individuals {o}I ⊆ ∆I , |{o}I | = 1

conjunction of concepts (D u E)I = DI ∩EI
disjunction of concepts (D t E)I = DI ∪EI

conjunction of roles (R u S)I = RI ∩ SI
disjunction of roles (R t S)I = RI ∪ SI

existential restriction (∃R.D)I = {x|∃y : (x, y) ∈ RI ∧ y ∈ DI}
universal restriction (∀R.D)I = {x|∀y : (x, y) ∈ RI ⇒ y ∈ DI}

qualified number restriction (≤ n R.D)I = {x|#{y|(x, y) ∈ RI ∧ y ∈ DI} ≤ n}
(≥ n R.D)I = {x|#{y|(x, y) ∈ RI ∧ y ∈ DI} ≥ n}

The unique name assumption - if {o1} 6= {o2} then {o1}I 6= {o2}I - ensures
that different individuals are interpreted as different domain elements8. For concept
expressions D and E, terminological axioms D v E are satisfied by an interpretation

7 DLs are named according to their constructs: AL is the basic DL[26], and ALCHOQ(t,u)
adds negation of concept expressions (C), role hierarchies (H), individuals (or nominals) (O),
qualified number restrictions (Q), and conjunction (u) and disjunction (t) of roles.

8 Note that OWL does not make the unique name assumption, but one may enforce it using the
AllDifferent construct.

www.manaraa.com

Semantic Web Reasoning with Conceptual Logic Programs 121

I if DI ⊆ EI . Role axioms R v S are interpreted similarly. An axiom X ≡ Y stands
forX v Y and Y v X . A knowledge baseΣ is a set of terminological and role axioms;
I is a model of Σ if I satisfies every axiom in Σ. A concept expression C is satisfiable
w.r.t. Σ if there exists a model I of Σ such that CI 6= ∅.

As an example, the human resources department may have an ontology specifying
the company’s structure: (a) Personnel consists of Management , Workers and john ,
(b) john is the boss of some manager, and (c) managers only take orders from other
managers and are the boss of at least three Workers . This corresponds to the following
ALCHOQ(t,u) knowledge base Σ1:

Personnel ≡Management tWorkers t {john}
{john} v ∃boss .Management

Management v (∀t orders .Management) u (≥ 3 boss .Workers)

A model of this knowledge base is I = ({j, w1, w2, w3,m}, ·I), with ·I defined by
WorkersI = {w1, w2, w3}, ManagementI = {m}, {john}I = {j}, PersonnelI =
{j, w1, w2, w3,m}, bossI = {(j,m), (m,w1), (m,w2), (m,w3)}, and t ordersI = ∅.

We can rewrite Σ1 as an equivalent CLP P4. The axioms in Σ1 correspond to the
constraints

← Personnel(X),not (Management tWorkers t {john})(X)
← (Management tWorkers t {john})(X),not Personnel(X)
← {john}(X),not (∃boss .Management)(X)
← Management(X),not ((∀t orders .Management) u (≥ 3 boss .Workers))(X)

in P4, where the concept expressions are used as predicates, and indicating, in case
of the first constraint, that if the answer set contains some Personnel(x) then it must
also contain (Management tWorkers t {john})(x). Those constraints are the kernel
of the translation; we still need, however, to simulate the DLs semantics by rules that
define the different DL constructs.

The predicate (Management tWorkers t {john}) is defined by rules

(Management tWorkers t {john})(X)← Management(X)
(Management tWorkers t {john})(X)←Workers(X)
(Management tWorkers t {john})(X)← {john}(X)

and thus, by minimality of answer sets, if (Management tWorkers t {john})(x),
there must either be a Management(x), a Workers(x), or a {john}(x). The other way
around, if one has a Management(x), a Workers(x), or a {john}(x), one must have,
since answer sets are models, (Management tWorkers t {john})(x). This behavior
is exactly what is required by the t-construct.

The predicate (∃boss .Management) is defined by (∃boss .Management)(X) ←
boss(X ,Y),Management(Y), such that, if (∃boss .Management)(x) is in the answer
set, there must be, by minimality, a y such that boss(x , y) and Management(y) are in
the answer set and vice versa.

www.manaraa.com

122 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

The conjunction predicate ((∀t orders .Management) u (≥ 3 boss .Workers)) is
defined by

((∀t orders .Management) u (≥ 3 boss .Workers))(X)←
(∀t orders .Management)(X), (≥ 3 boss .Workers)(X)

and the body predicates by the rules

(∀t orders .Management)(X) ← not ∃t orders .¬Management(X)
(≥ 3 boss .Workers)(X) ← boss(X ,Y1), boss(X ,Y2), boss(X ,Y3),

Workers(Y1),Workers(Y2),Workers(Y3),
Y1 6= Y2 ,Y2 6= Y3 ,Y1 6= Y3

and

∃t orders .¬Management(X) ← t orders(X ,Y), (¬Management)(Y)
(¬Management)(X) ← not Management(X)

Finally, we need to introduce free rules for all concept and role names. Intuitively,
concept names and roles names are types and thus contain some instances or not.

Workers(X) ∨ not Workers(X)←
Personnel(X) ∨ not Personnel(X)←

Management(X) ∨ not Management(X)←
boss(X ,Y) ∨ not boss(X ,Y)←

t orders(X ,Y) ∨ not t orders(X ,Y)←

The individual {john} is taken care of by introducing a constant john in the program
with the rule {john}(john) ← . The only possible value of X in a {john}(X) is then
john .

The DL model I corresponds to the open answer set (H,M) with H = (∆I \
{j}) ∪ {john} and M = {C(x) | C ∈ upreds(P4), x ∈ CI} ∪ {R(x, y) | R ∈
bpreds(P4), (x, y) ∈ RI}, with a slight abuse of notation, i.e. using C and R as pred-
icates and DL expressions. Formally, we define the closure clos(C,Σ) of a concept
expression C and a knowledge base Σ as the smallest set satisfying the following con-
ditions:

– for every concept (role) expressionD (R) in {C}∪Σ we haveD(R) ∈ clos(C,Σ),
– for every D in clos(C,Σ), we distinguish the following cases:
D = ¬D1 ⇒ D1 ∈ clos(C,Σ)
D = D1 tD2 ⇒ {D1, D2} ⊆ clos(C,Σ)
D = D1 uD2 ⇒ {D1, D2} ⊆ clos(C,Σ)
D = ∃R.D1 ⇒ {R,D1} ⊆ clos(C,Σ)
D = ∀R.D1 ⇒ {D1, ∃R.¬D1} ⊆ clos(C,Σ)
D = (≤ n Q.D1)⇒ {(≥ n+ 1 Q.D1)} ⊆ clos(C,Σ)
D = (≥ n Q.D1)⇒ {Q,D1} ⊆ clos(C,Σ)

– for R t S ∈ clos(C,Σ), {R,S} ⊆ clos(C,Σ),
– for R u S ∈ clos(C,Σ), {R,S} ⊆ clos(C,Σ).

www.manaraa.com

Semantic Web Reasoning with Conceptual Logic Programs 123

The CLP Φ(C,Σ) that simulates satisfiability checking ofC w.r.t.Σ is then constructed
by introducing for concept names A, role names P , and individuals {o} in clos(C,Σ),
rules A(X) ∨ not A(X) ← , P(X ,Y) ∨ not P(X ,Y) ← , and facts {o}(o) ←.
For every other construct B ∈ clos(C,Σ), we introduce, depending on the particular
construct, a rule with B in the head as in Table 2.

Table 2. CLP Translation Φ(C,Σ)

¬D(X) ← not D(X) D u E(X)← D(X), E(X)
D tE(X)← D(X) D t E(X)← E(X)
∃R.D(X)← R(X,Y), D(Y) ∀R.D(X) ← not ∃R.¬D(X)

R t S(X, Y)← R(X,Y) R u S(X,Y)← R(X,Y), S(X,Y)
R t S(X, Y)← S(X, Y) (≤ n R.D)(X) ← not (≥ n+ 1 R.D)(X)

(≥ n R.D)(X)← R(X,Y1), . . . , R(X,Yn), D(Y1), . . . , D(Yn), Y1 6= Y2, . . .

This completes the simulation of ALCHOQ(t,u) using CLP.

Theorem 3. An ALCHOQ(t,u) concept expression C is satisfiable w.r.t. a knowl-
edge base Σ iff C is satisfiable w.r.t. Φ(C,Σ).

Proof Sketch. For the “only if” direction, take C satisfiable w.r.t. Σ, i.e. there exists
a model I = (∆I , ·I) with CI 6= ∅. We rename the element x ∈ {o}I from ∆I

by o, which is possible by the unique name assumption. We then construct the answer
set (H,M) with H = ∆I and M = {C(x) | x ∈ CI , C ∈ clos(C,Σ)} ∪ {R(x, y) |
(x, y) ∈ RI , R ∈ clos(C,Σ)}. One can show that (H,M) is an answer set ofΦ(C,Σ).

For the “if” direction, we have an open answer set (H,M) that satisfies C, i.e.
C(x) ∈ M for some x ∈ H. Define an interpretation (∆I , ·I), with ∆I = H, and
AI = {y | A(y) ∈ M}, for concept names A, P I = {(y, z) | P (y, z) ∈ M}, for
role names P , and {o}I = {o}, for o ∈ HΦ(C,Σ). I is defined on concept expressions
and role expressions as in Table 1, and we can show that I is a model of Σ such that
CI 6= ∅. ut

Note that, in general, the resulting CLP Φ(C,Σ) is not local, e.g., a DL expres-
sion ∃R.(A u B) is translated as the rules ∃R.(A u B)(X) ← R(X ,Y),A u B(Y)
and A u B(X) ← A(X),B(X), such that there is a positive A u B atom that is not
free in a body and there is a rule with A u B in the head and a body that has a non-
empty positive part. Φ(C,Σ) has, however, the convenient property that it is positively
acyclic, i.e. recursion only occurs through negative (with naf) literals; for more de-
tails, see [14]. It is sufficient to note that the body of a rule in Φ(C,Σ) is structurally
“smaller” than the head, e.g., A u B is smaller than ∃R.A u B. This permits us to
replace the rule with ∃R.A u B in the head by the two rules ∃R.(A u B)(X) ←
R(X ,Y),not (A u B)′(Y); (A u B)′(X) ← not (A u B)(X); i.e. we negate A u
B(Y) twice. The resulting CLP is now local.

Such a procedure does not work for arbitrary CLPs, e.g., we have that ({x}, {l(x)})
is not an open answer set of the rule l(X) ← l(X), since, although it is a model of

www.manaraa.com

124 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

l(x) ← l(x), it is not a minimal model - the empty set is. Transforming the rule, how-
ever, by doubly negating the body yields l(X) ← not l ′(X) and l ′(X) ← not l(X),
which does have ({x}, {l(x)} as an answer set since the GL-reduct contains only the
rule l(x)← .

The ALCHOQ(t,u) simulation shows the feasibility of Semantic Web reason-
ing with CLPs, as ALCHOQ(t,u) is an expressive DL closely related to the DL
SHOIQ(D), i.e. SHOQ(D)[18] with support for inverted roles, and SHOIQ(D) is
the DL corresponding to the ontology language OWL DL[5]. ALCHOQ(t,u) differs
from the DL SHOIQ(D) by its lack of inverted roles, data types (D) and transitivity
of roles (which distinguish S fromALC); it adds the role constructs t and u though.

Since CLP, as a logic programming paradigm, is a natural framework for express-
ing rules, it can be used to represent and reason with both ontological and rule-based
knowledge. Additionally, CLP enables nonmonotonic reasoning on the Semantic Web,
identified in [7] as one of the requirements on a logic for reasoning on the Web.

Translating existing DL ontologies to CLP or devising new ontologies that need
only DL-like constructs with CLP is not always a good idea. As one sees from the
above simulation, the CLP version of a DL ontology produces a lot of overhead rules,
specifying the implicit DL semantics. As a result, the translated CLP is likely to be
less compact than the original DL knowledge base. However, two remarks are in order
here. Firstly, CLPs could nevertheless prove useful as an underlying implementation
mechanism for uniform reasoning with both DL ontologies and CLP rules: they ensure
a decidable environment for making inferences. Secondly, not all common knowledge
can be elegantly represented by DLs; some useful constructs cannot be represented at
all. We highlight three advantages of using CLPs for representing knowledge:

Closed Domain Reasoning. Using CLPs, we can explicitly close the domain, i.e.
only allow reasoning with constants. Indeed, one can, as in [12], simply add the rules
H (a) ← for every constant a, and a constraint ← not H (X) such that all domain
elements must be constants. A similar intervention, restricting the reasoning to individ-
uals, is impossible within standard DLs9 and was one of the arguments to extend DLs
with nonmonotonic tools[9].

Generalized Number Restrictions. The translation of DL ontologies tend to produce
some overhead, however, CLPs are more articulate than DLs in other aspects. E.g., rep-
resenting the knowledge that a team must at least consist of a technical expert, a secre-
tary, and a team leader, where the leader and the technical expert are not the same, can
be done by team(X) ← member(X ,Y1), tech(Y1),member(X ,Y2), secret(Y2),
leader(X ,Y3), Y1 6= Y3. Note that this definition of a team does not exclude non-
listed members to be part of the team. Moreover, in the presence of other rules with
team in the head, a team may be qualified by one of those rules. E.g., including a fact
team(007), would qualify 007 as a team, regardless of its members. Representing such
generalized number restrictions using DLs would be significantly harder while arguably
less succinct.

Query Containment, Consistency, and Disjointness. Those three query problems
were identified in [4] as important for ontology reasoning. Query containment is the
problem of deciding whether for every database D satisfying an ontology, the result

9 One could enforce closed domain reasoning in DLs by working internally with CLPs.

www.manaraa.com

Semantic Web Reasoning with Conceptual Logic Programs 125

of a query Q1 to D is contained in the result of Q2 to D. Instead of the usual con-
junctive Datalog queries, we can use CLPs to represent both queries and ontology.
E.g., a query Q1 (X) ← Management(X) retrieves the managers and Q2 (X) ←
boss(X ,Y1), boss(X ,Y2),Y1 6= Y2 retrieves the persons that supervise more than
two persons. Clearly, Q1 is contained in Q2 w.r.t. the ontology P4 since, according to
P4, managers must supervise at least three workers.

Moreover, all three query problems can be reduced to satisfiability checking w.r.t.
a CLP; intuitively, in the query containment case, one extends the ontology with a rule
r(X) ← Q1 (X),not Q2 (X), against which unsatisfiability of r is checked. More
detail can be found in [14].

5 Related Work

There are basically two lines of research that try to reconcile Description Logics with
Logic Programming. The approaches in [6, 13, 23, 2, 20, 28] simulate DLs with LP, pos-
sibly with a detour to FOL, while [8, 24, 10] attempt to unite the strengths of DLs and
LP by letting them coexist and interact.

In [6], the simulation of a DL with acyclic axioms in open logic programming is
shown. An open logic program is a program with possibly undefined predicates and a
FOL-theory; the semantics is the completion semantics, which is only complete for a re-
strictive set of programs. The open-nes lies in the use of undefined predicates, which are
comparable to free predicates with the difference that free predicates can be expressed
within the CLP framework. More specifically, open logic programming simulates rea-
soning in the DL ALCN , N indicating the use of unqualified number restrictions,
where terminological axioms consist of non-recursive concept definitions; ALCN is
a subclass of ALCHOQ(t,u).

[13] imposes restrictions on the occurrence of DL constructs in terminological ax-
ioms to enable a simulation using Horn clauses. E.g., axioms containing disjunction on
the right hand side, as in D v C t D, universal restriction on the left hand side, or
existential restriction on the right hand side are prohibited since Horn clauses cannot
represent them. Moreover, neither negation of concept expressions nor number restric-
tions can be represented. So-called Description Logic Programs are thus incapable of
handling expressive DLs; however, [13]’s forte lies in the identification of a subclass of
DLs that make efficient reasoning through LPs possible. [23] extends the work in [13],
for it simulates non-recursive ALC ontologies with disjunctive deductive databases.
Compared with, possibly recursive, ALCHOQ(t,u), those are still rather inexpres-
sive.

In [2], the DL ALCQI is successfully translated into a DLP. However, to take
into account infinite interpretations [2] presumes, for technical reasons, the existence of
function symbols, which leads, in general, to undecidability of reasoning.

[20] and [28] simulate reasoning in DLs with a LP formalism by using an interme-
diate translation to first-order clauses. In [20], SHIQ− knowledge bases, i.e. SHIQ
knowledge bases with the requirement that roles S in (≤ nS.C) have no subroles, are
reduced to first-order formulas, on which basic superposition calculus is then applied.

www.manaraa.com

126 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

The result is transformed into a function-free version which is translated to a disjunctive
Datalog program.

[28] translatesALCQI concepts to first-order formulate, grounds them with a finite
number of constants, and transforms the result to a logic program. One can use a finite
number of constants by the finite-model property for ALCQI-concept expressions; in
the presence of terminological axioms this is no longer possible. The resulting program
is, however, not declarative anymore such that its main contribution is that it provides
an alternative reasoner for DLs, whereas CLPs can be used both for reasoning with
DLs and for a direct and elegant expression of knowledge. Furthermore, CLPs are also
interesting from a pure LP viewpoint since they constitute a decidable class of DLPs
under the open answer set semantics.

Along the second line of research, anAL-log[8] system consists of two subsystems:
a DL knowledge base and a Datalog program, where in the latter variables may range
over DL concept instances, thus obtaining a flow of information from the structural DL
part to the relational Datalog part. This is extended in [24] for disjunctive Datalog and
the ALC DL. A further generalization is attained in [10] where the particular DL can
be the expressive SHIF(D), F stands for functional restrictions, or SHOIN (D).
Moreover, the flow of information can go both ways.

Finally, a notable approach, which cannot be categorized in one of the two lines of
research described above10, is the SWRL[19] initiative. SWRL is a Semantic Web Rule
Language and extends the syntax and semantics of OWL DL with unary/binary Datalog
RuleML[1], i.e. Horn-like rules. This extension is undecidable[17] but lacks, neverthe-
less, interesting knowledge representation mechanisms such as negation as failure.

A reduction from query problems to (un)satisfiability problems for DLs may be
found in [29].

6 Conclusions and Directions for Further Research

We extended ASP with open domains, defined CLPs to regain decidability, and reduced
reasoning with CLPs to finite, closed, ASP. The simulation of an expressive fragment of
the OWL DL ontology language, as well as additional LP mechanisms such as negation
as failure and closed world reasoning, illustrates the relevance of CLPs for Semantic
Web reasoning. We concluded with a description of related work.

We plan to further relax the restrictions on CLPs by working towards a graph-model
property. A prototype implementation, using heuristics, is also envisaged.

References

1. The Rule Markup Initiative. http://www.ruleml.org.
2. G. Alsaç and C. Baral. Reasoning in Description Logics using Declarative Logic Program-

ming. http://www.public.asu.edu/ guray/dlreasoning.pdf, 2002.
3. H. Andréka, I. Németi, and J. Van Benthem. Modal languages and bounded fragments of

predicate logic. J. of Philosophical Logic, 27(3):217–274, 1998.

10 Although it tends towards the coexisting approach.

www.manaraa.com

Semantic Web Reasoning with Conceptual Logic Programs 127

4. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook. Cambridge University Press, 2003.

5. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, and L. A. Stein. OWL Web Ontology Language Reference, 2004.

6. K. Van Belleghem, M. Denecker, and D. De Schreye. A Strong Correspondence between
DLs and Open Logic Programming. In Proc. of ICLP’97, pages 346–360, 1997.

7. F. Bry and S. Schaffert. An Entailment Relation for Reasoning on the Web. In Proc. of Rules
and Rule Markup Languages for the Semantic Web, LNCS, pages 17–34. Springer, 2003.

8. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog and
Description Logics. J. of Intell. and Cooperative Information Systems, 10:227–252, 1998.

9. F. M. Donini, D. Nardi, and R. Rosati. Description Logics of Minimal Knowledge and
Negation as Failure. ACM Trans. Comput. Logic, 3(2):177–225, 2002.

10. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer Set Program-
ming with DLs for the Semantic Web. In Proc. of KR 2004, pages 141–151, 2004.

11. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In Proc.
of ICLP’88, pages 1070–1080, Cambridge, Massachusetts, 1988. MIT Press.

12. M. Gelfond and H. Przymusinska. Reasoning in Open Domains. In Logic Programming and
Non-Monotonic Reasoning, pages 397–413. MIT Press, 1993.

13. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combining
Logic Programs with Description Logic. In Proc. of WWW 2003, pages 48–57, 2003.

14. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Decidable Open Answer Set Program-
ming. Technical report, Vrije Universiteit Brussel, Dept. of Computer Science, 2004.

15. S. Heymans and D. Vermeir. Integrating Description Logics and Answer Set Programming.
In Proc. of PPSWR 2003, number 2901 in LNCS, pages 146–159. Springer, 2003.

16. S. Heymans and D. Vermeir. Integrating Ontology Languages and Answer set Programming.
In Proc. of WebS’03, pages 584–588. IEEE Computer Society, 2003.

17. I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules Language. In Proc. of
the Thirteenth International World Wide Web Conference (WWW 2004). ACM, 2004.

18. I. Horrocks and U. Sattler. Ontology Reasoning in the SHOQ(D) Description Logic. In
Proc. of IJCAI’01, pages 199–204. Morgan Kaufmann, 2001.

19. I. Horrocks, P. F. Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A Semantic
Web Rule language Combining OWL and RuleML, May 2004.

20. U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ− Description Logic to Disjunctive
Datalog Programs. FZI-Report 1-8-11/03, Forschungszentrum Informatik (FZI), 2003.

21. N. Leone, W. Faber, and G. Pfeifer. DLV homepage. http://www.dbai.tuwien.ac.at/proj/dlv/.
22. V. Lifschitz. Answer Set Programming and Plan Generation. AI, 138(1-2):39–54, 2002.
23. B. Motik, R. Volz, and A. Maedche. Optimizing Query Answering in Description Logics

using disjunctive deductive databases. In Proc. of KRDB’03, pages 39–50, 2003.
24. R. Rosati. Towards Expressive KR Systems Integrating Datalog and Description Logics:

Preliminary Report. In Proc. of DL’99, pages 160–164, 1999.
25. J. Schlipf. Some Remarks on Computability and Open Domain Semantics. In Proc. of the

Worksh. on Struct. Complexity and Recursion-Theoretic Methods in Log. Prog., 1993.
26. M. Schmidt-Schaub and G. Smolka. Attributive Concept Descriptions with Complements.

Artif. Intell., 48(1):1–26, 1991.
27. P. Simons. Smodels homepage. http://www.tcs.hut.fi/Software/smodels/.
28. T. Swift. Deduction in Ontologies via Answer Set Programming. In Vladimir Lifschitz and

Ilkka Niemelä, editors, LPNMR, volume 2923 of LNCS, pages 275–288. Springer, 2004.
29. S. Tessaris. Querying expressive DLs. In Proc. of DL-2001, 2001.
30. M. Y. Vardi. Why is Modal Logic so Robustly Decidable? Technical report, 1997.
31. M. Y. Vardi. Reasoning about the Past with Two-Way Automata. In Proc. of ICALP ’98,

pages 628–641. Springer, 1998.

